按Enter进行搜索或Esc关闭
按Enter进行搜索或Esc关闭

NOG-MHC I/II-2 KO Mice (NOG-dKO)

品系代码:

411

专业名称:

NOD.Cg-PrkdcscidIl2rgtm1SugB2mem1TacH2-Ab1tm1Doi/JicCrl

小鼠,免疫缺陷模型免疫学,肿瘤学同类系,免疫缺陷

【CIEM正式授权】PBMC人源化模型构建、肿瘤免疫治疗、T细胞免疫功能研究、GVHD相关研究、免疫检查点抑制剂研究。

品系来源

NOG-dKO(NOG-MHC I/II-2 KO)小鼠是由日本中央实验动物研究所(CIEM)的Mamoru Ito博士培育而成。Mamoru Ito博士实验室利用CRISPR技术在NOG小鼠基础上敲除B2m和Ab1基因,培育出的双基因敲除模型。

* CIEM已将NOG-dKO在日本地区的名称更新为NOG-ΔMHC (NOG-Iab KO, B2m KO2),但在中国地区维通利华仍沿用NOG-dKO名称,二者实际为同一品系,点击查看

 

【维通利华 - 中国大陆地区CIEM官方授权经销商 - NOG模型系列】

✈ 2019年、2020年,维通利华从CIEM引入该品系核心群。

 

 

咨询我们的NOG模型专家

 

应用特性

研究用途

  • 免疫系统重建(huPBMC-NOG-dKO) (huPBMC-NOG-dKO现货提供)
  • 肿瘤免疫治疗
  • CAR-T药效评估:NOG-dKO小鼠可降低CAR-T细胞在临床前动物实验中的GvHD反应,助于药效评估。
  • T细胞免疫功能研究
  • GVHD研究

 

特性:

毛色:白化

除了NOG小鼠的特性外,还具备以下特性:

  • MHC Ⅰ/Ⅱ缺失;
  • hPBMC移植后,窗口期可延长至12周;
  • hPBMC移植后,GVHD发生延迟

 

huPBMC-NOG-dKO

➢制备周期短,成本低

➢T细胞重建

➢GvHD反应弱,研究周期可长达12周

➢靶点在T细胞的肿瘤免疫治疗:双特异性抗体、免疫检查点抑制剂

 

特别提示:

NOG-dKO小鼠的huPBMC免疫系统重建模型,由于敲除了MHC I/II 类分子,huPBMC注射后GVHD反应非常弱,一方面提高了研究周期,可达12周。另一方面由于没有PBMC Xeno-GVHD造成的非特异性T细胞扩增,能更精准地评判药物的抗肿瘤活性。

 

同时由于NOG-dKO小鼠PBMC注射后GVHD反应非常弱,不会引起由于GVHD反应而导致的T细胞扩增,从而重建率要低于NOG小鼠,故注射剂量要稍高。日本CIEM建议移植剂量为5-10*10^6,维通利华对外提供的模型注射剂量在5-7*10^6范围内,不同的donor来源会有差异,供参考。

价格规格

品系代码 品系名称 日/周龄 性别 VAF/SPF级 Elite/SPF级
411
NOG-dKO
1-8周
  1050

 

*以上规格与价格自2025年1月1日至2025年12月31日有效。

生长曲线

NOG-MHC I/II-2 KO Mice (NOG-dKO)

应用文献

NOG dKO Publications

 

Authors

Year

Paper Title

Keywords

Ryu Matsumoto, MD, et al.

2024

CD8+ T cell-mediated rejection of allogenic human-induced pluripotent stem cell-derived cardiomyocyte sheets in human PBMC-transferred NOG MHC double knockout mice

HiPS-CMs, CD8+ T cell-mediated rejection, NOG MHC double knockout mice, xeno-GVHD, iPS

Guo et al.

2024

A CD36-dependent non-canonical lipid metabolism program promotes immune escape and resistance to hypomethylating agent therapy in AML

CD36, AML, MV4-11, T cell, immunosuppression

Zhu W, et al.

2024

OMA1 competitively binds to HSPA9 to promote mitophagy and activate the
cGAS–STING pathway to mediate GBM immune escape

OMA1. HSPA9, cGAS–STING pathway, GBM,PD-1, CD8+T

Shen, J, et al.

2024

Low Immunogenicity of Keratinocytes Derived from Human Embryonic Stem Cells

keratinocytes; embryonic stem cells; differentiation; allograft rejection; immunogenicity

Hirofumi Nakano, et al.

2024

Fatty Acids Play a Critical Role in Mitochondrial Oxidative Phosphorylation
in Effector T Cells in Graft-versus-Host Disease

Fatty Acids, GvHD, MHC-/- NOG , MHC+/+ NOG , CD8+T, CD4+T

Yi Ouyang, et al.

2023

FGFR3 Alterations in Bladder Cancer Stimulate Serine Synthesis to Induce Immune-Inert Macrophages That Suppress T-cell Recruitment and Activation

FGFR3, duvelisib,bladder cancer cells, T cell, macrophage

Takahiro Sasaki, et al.

2023

Therapeutic effects of anti-GM2 CAR-T cells expressing IL-7
and CCL19 for GM2-positive solid cancer in xenograft model

CAR-T cell, chemokine, cytokine, ganglioside, solid cancers

Zhou C, et al.

2023

Disruption of SLFN11 deficiency-induced CCL2 signaling and macrophage M2
polarization potentiates anti-PD-1 therapy efficacy in hepatocellular carcinoma

Schlafen 11; tumor-associated macrophages; immune checkpoint inhibitors; serum biomarker

Zhuang Chen, et al.

2023

YTHDF2-mediated circYAP1 drives immune escape and cancer progression through activating YAP1/TCF4-PD-L1 axis

circYAP1, YAP1/TCF4, PD-L1, CD8+ T, HCT116

Y. Wang, et al.

2023

PRMT3-Mediated Arginine Methylation of METTL14 Promotes Malignant Progression and Treatment Resistance in Endometrial Carcinoma

PRMT3, SGC707, endometrial cancer (EC), PD-1, PBMC-NOG-dKO

Yasuto Akiyama, et al.

2022

Development of Novel Small Antitumor Compounds Inhibiting PD-1/PD-L1 Binding

SCC-3, PD-1/PD-L1,small chemical compound,PBMCs

Bo Wang, et al.

2021

Generation of hypoimmunogenic T cells from genetically engineered allogeneic human induced pluripotent stem cells

CAR-T, iPSC-derived T cells, CD20, B-lymphoblastoid cell line

Takeshi Watanable

2021

human-type artificial lymphoid tissues induce antigen-specific immune responses upon antigen stimulation

artificial lymphoid tissues (aLTs), immunotherapy

Ling Yin, et al.

2020

Humanized mouse model: a review on preclinical applications   for cancer immunotherapy

humanized mouse model, cancer, immunotherapy

Akira Iizuka, et al.

2019

A T-cell–engaging   B7-H4/CD3-bispecific Fab-scFv Antibody Targets Human Breast Cancer

bsAbs, breast cancer, PBMCs, humanized

Tadashi Ashizawa, et al.

2019

Antitumor activity of the PD-1/PD-L1 binding inhibitor   BMS-202 in the humanized MHC-double knockout NOG mouse

PBMCs,PD-1/PD-L1 binding inhibitor, SCC-3,lympoma, humanized

Tadashi Ashizawa, et al.

2019

Impact of combination therapy with anti-PD-1 blockade and a   STAT3 inhibitor on the tumor-infiltrating lymphocyte status

pancreatic cancer,immune checkpoint blockade(ICB), PD-1, mAbs, STAT3   inhibitor, humanized

Yasufumi Kawasaki, et al.

2019

Alloreactive T Cells Display a Distinct Chemokine Profile in   Response to Conditioning in Xenogeneic GVHD Models

GvHD, CCR5 antagonist, pan T cell, humanized

Satoshi Aono, et al.

2018

Immunological   responses against hepatitis B virus in human peripheral blood mononuclear   cell-engrafted mice

Hepatitis B virus, vaccine, PBMCs, humanized

Tadashi Ashizawa, et al.

2017

Antitumor Effect of Programmed Death-1 (PD-1) Blockade in   Humanized the NOG-MHC Double Knockout Mouse

PBMCs, glioblastoma, lymphoma, PD-1, mAbs, humanized

Tomonori Yaguchi, et al.

2017

Human   PBMC-transferred murine MHC class I/II-deficient NOG mice enable long-term   evaluation of human immune responses

ACT, PBMCs, vaccine, humanized

Yasuto Akiyama, et al.

2017

The anti-tumor activity of the STAT3 inhibitor STX-0119   occurs via promotion of tumor-infiltrating lymphocyte accumulation in   temozolomide-resistant glioblastoma cell line

PBMCs, STAT3 inhibitor,TIL, TMZ-resistant glioblastoma, humanized

Tomonori Yaguchi, et al.

2013

MHC class I/II deficient NOG mice are useful for analysis of   human T/B cell responses for human tumor immunology research

PBMCs, humanized