.jpg)
NOG-MHC I/II-2 KO Mice (NOG-dKO)
411
NOD.Cg-PrkdcscidIl2rgtm1SugB2mem1TacH2-Ab1tm1Doi/JicCrl
【CIEM正式授权】PBMC人源化模型构建、肿瘤免疫治疗、T细胞免疫功能研究、GVHD相关研究、免疫检查点抑制剂研究。
品系来源
NOG-dKO(NOG-MHC I/II-2 KO)小鼠是由日本中央实验动物研究所(CIEM)的Mamoru Ito博士培育而成。Mamoru Ito博士实验室利用CRISPR技术在NOG小鼠基础上敲除B2m和Ab1基因,培育出的双基因敲除模型。
* CIEM已将NOG-dKO在日本地区的名称更新为NOG-ΔMHC (NOG-Iab KO, B2m KO2),但在中国地区维通利华仍沿用NOG-dKO名称,二者实际为同一品系,点击查看
【维通利华 - 中国大陆地区CIEM官方授权经销商 - NOG模型系列】
✈ 2019年、2020年,维通利华从CIEM引入该品系核心群。
应用特性
研究用途:
- 免疫系统重建(huPBMC-NOG-dKO) (huPBMC-NOG-dKO现货提供)
- 肿瘤免疫治疗
- CAR-T药效评估:NOG-dKO小鼠可降低CAR-T细胞在临床前动物实验中的GvHD反应,助于药效评估。
- T细胞免疫功能研究
- GVHD研究
特性:
毛色:白化
除了NOG小鼠的特性外,还具备以下特性:
- MHC Ⅰ/Ⅱ缺失;
- hPBMC移植后,窗口期可延长至12周;
- hPBMC移植后,GVHD发生延迟
huPBMC-NOG-dKO
➢制备周期短,成本低
➢T细胞重建
➢GvHD反应弱,研究周期可长达12周
➢靶点在T细胞的肿瘤免疫治疗:双特异性抗体、免疫检查点抑制剂
特别提示:
NOG-dKO小鼠的huPBMC免疫系统重建模型,由于敲除了MHC I/II 类分子,huPBMC注射后GVHD反应非常弱,一方面提高了研究周期,可达12周。另一方面由于没有PBMC Xeno-GVHD造成的非特异性T细胞扩增,能更精准地评判药物的抗肿瘤活性。
同时由于NOG-dKO小鼠PBMC注射后GVHD反应非常弱,不会引起由于GVHD反应而导致的T细胞扩增,从而重建率要低于NOG小鼠,故注射剂量要稍高。日本CIEM建议移植剂量为5-10*10^6,维通利华对外提供的模型注射剂量在5-7*10^6范围内,不同的donor来源会有差异,供参考。
价格规格
品系代码 | 品系名称 | 日/周龄 | 性别 | VAF/SPF级 | Elite/SPF级 |
411 |
NOG-dKO
|
1-8周
|
雌
|
1050 |
*以上规格与价格自2025年1月1日至2025年12月31日有效。
生长曲线
NOG-MHC I/II-2 KO Mice (NOG-dKO)
应用文献
NOG dKO Publications
Authors |
Year |
Paper Title |
Keywords |
Ryu Matsumoto, MD, et al. |
2024 |
HiPS-CMs, CD8+ T cell-mediated rejection, NOG MHC double knockout mice, xeno-GVHD, iPS |
|
Guo et al. |
2024 |
CD36, AML, MV4-11, T cell, immunosuppression |
|
Zhu W, et al. |
2024 |
OMA1. HSPA9, cGAS–STING pathway, GBM,PD-1, CD8+T |
|
Shen, J, et al. |
2024 |
Low Immunogenicity of Keratinocytes Derived from Human Embryonic Stem Cells |
keratinocytes; embryonic stem cells; differentiation; allograft rejection; immunogenicity |
Hirofumi Nakano, et al. |
2024 |
Fatty Acids, GvHD, MHC-/- NOG , MHC+/+ NOG , CD8+T, CD4+T |
|
Yi Ouyang, et al. |
2023 |
FGFR3, duvelisib,bladder cancer cells, T cell, macrophage |
|
Takahiro Sasaki, et al. |
2023 |
CAR-T cell, chemokine, cytokine, ganglioside, solid cancers |
|
Zhou C, et al. |
2023 |
Schlafen 11; tumor-associated macrophages; immune checkpoint inhibitors; serum biomarker |
|
Zhuang Chen, et al. |
2023 |
circYAP1, YAP1/TCF4, PD-L1, CD8+ T, HCT116 |
|
Y. Wang, et al. |
2023 |
PRMT3, SGC707, endometrial cancer (EC), PD-1, PBMC-NOG-dKO |
|
Yasuto Akiyama, et al. |
2022 |
Development of Novel Small Antitumor Compounds Inhibiting PD-1/PD-L1 Binding |
SCC-3, PD-1/PD-L1,small chemical compound,PBMCs |
Bo Wang, et al. |
2021 |
CAR-T, iPSC-derived T cells, CD20, B-lymphoblastoid cell line |
|
Takeshi Watanable |
2021 |
artificial lymphoid tissues (aLTs), immunotherapy |
|
Ling Yin, et al. |
2020 |
Humanized mouse model: a review on preclinical applications for cancer immunotherapy |
humanized mouse model, cancer, immunotherapy |
Akira Iizuka, et al. |
2019 |
A T-cell–engaging B7-H4/CD3-bispecific Fab-scFv Antibody Targets Human Breast Cancer |
bsAbs, breast cancer, PBMCs, humanized |
Tadashi Ashizawa, et al. |
2019 |
PBMCs,PD-1/PD-L1 binding inhibitor, SCC-3,lympoma, humanized |
|
Tadashi Ashizawa, et al. |
2019 |
pancreatic cancer,immune checkpoint blockade(ICB), PD-1, mAbs, STAT3 inhibitor, humanized |
|
Yasufumi Kawasaki, et al. |
2019 |
GvHD, CCR5 antagonist, pan T cell, humanized |
|
Satoshi Aono, et al. |
2018 |
Hepatitis B virus, vaccine, PBMCs, humanized |
|
Tadashi Ashizawa, et al. |
2017 |
PBMCs, glioblastoma, lymphoma, PD-1, mAbs, humanized |
|
Tomonori Yaguchi, et al. |
2017 |
ACT, PBMCs, vaccine, humanized |
|
Yasuto Akiyama, et al. |
2017 |
PBMCs, STAT3 inhibitor,TIL, TMZ-resistant glioblastoma, humanized |
|
Tomonori Yaguchi, et al. |
2013 |
PBMCs, humanized |